国家自然科学基金委员会关于发布“十三五”第五批重大项目指南及申请注意事项的通告

国家自然科学基金委员会(以下简称自然科学基金委)根据《国家自然科学基金“十三五”发展规划》优先发展领域和新时代科学基金深化改革战略部署,在深入研讨和广泛征求科学家意见的基础上,现发布“十三五”第五批8个科学部63个重大项目指南,请申请人及依托单位按重大项目指南中所述的要求和注意事项提出申请。

全文链接:

http://www.nsfc.gov.cn/publish/portal0/tab434/info78444.htm

本文节选了化学科学部、工程与材料学部重大项目指南如下:

化学科学部重大项目指南

2020年化学科学部共发布8个重大项目指南,拟资助6个重大项目。项目申请人申请的直接费用预算不得超过1800万元/项。申请书的附注说明选择相关重大项目名称,例如“非常规激发染料的构效调控及产品工程科学基础”。

“非常规激发染料的构效调控及产品工程科学基础”

重大项目指南

染料对光的选择性吸收是其本征特性,因而总是与光记录、光存贮、光显示及光成像直接联系,是多个新兴产业的关键化学品。随着相关领域发展,染料分子在常规条件下的激发态行为和能量弛豫规律逐步被揭示出来。但在极端条件下,特别是在高光子能量(如极紫外)和低光子能量(如近红外、超声波、偏振光)等非常规条件下,对染料分子激发态的形成、调控和应用研究极为薄弱。极紫外可以提供高的分辨率、超声波能提供更深的穿透力,这些赋予了非常规激发染料特殊的应用功能。因此,拓展传统紫外-可见光波长范围的染料波长,开展非常规激发和吸收染料分子的研究,对于光刻、显示等新兴产业发展,具有重要意义。

一、科学目标

项目拟围绕非常规激发染料结构-性能调控的关键科学问题,特别是在高能量光子(极紫外)和低能量光子(近红外、超声、偏振光)等特种激发条件下,染料分子对激发能的吸收和响应规律,通过分子结构精准设计、调控激发态的能量释放途径(如发光、电子转移、能量转移、催化反应等),实现光刻、显示等新兴产业领域的产品分子设计创新,为支撑相关产业发展提供科学与技术基础。

二、研究内容

(一)非常规激发理论及分子体系设计。

非常规激发染料的激发效率是实现功能的基础。重点研究在高光子能量或低光子能量条件下,不同分子的激发响应性,包括形成激发态的效率、光引发的电子转移、能量转移或化学反应效率;揭示分子结构与目标性能(包括耐受性)之间的规律,形成若干性能优异的染料母体分子平台,为产品分子设计提供理论依据。

(二)极紫外光刻材料设计及制备。

聚焦极紫外光敏分子结构与极紫外光吸收截面的关系,探索极紫外光引发的新型分解或聚合反应、过程中电子或能量转移形成的催化机制,研究新型结构的极紫外光敏分子及其光刻胶的制备、生产过程对超高分辨率性能的影响因素,形成新型极紫外光刻胶的关键生产工艺,为其规模化生产提供科学技术基础。

(三)功能染料工程化及其在光电材料中的应用基础。

分子的稳定性是染料工程化应用的前提。需揭示“光-热-机械”复杂稳定性与染料分子结构的映射机制,包括不同光能量、热效应和机械效应对染料稳定性和应用性能的调控规律,研究染料分子结构对光刻胶流变学性能和对光引发剂光化学反应性能的影响机制,探索提高彩色光刻胶分辨率的有效途径,建立与终端产品服役条件相一致的工程技术体系和可靠性评价准则。

“分子光子学材料与激发态过程调控”

重大项目指南

光子学是研究以光子作为信息和能量载体的科学,涉及光的产生、传输、探测、放大和显示等应用。和无机光子学材料相比,分子光子学材料在光学性能、柔性加工和生产成本等方面展现出独特的优势。设计合成同时具备优异光学性质和电荷输运能力的分子材料,从微观角度深入认识分子材料中的激发态过程,结合器件构型设计优化制备工艺和性能指标,将推动分子光子学材料在相关产业尤其是新型显示领域的应用。“分子聚集态下特异性激发态过程对光子学性能的调控机制”与 “不同光子学功能中涉及的激子与光子的相互作用原理”是分子光子学研究中的关键科学问题。“新型光子学分子的理性设计与高效合成”与“光子学功能导向的分子材料组装与器件集成”是本领域的重大需求。本重大项目旨在联合分子材料合成、激发态理论、光谱学和光电器件等方面的科学家进行攻关,从微观角度深入认识分子材料中的激发态动力学过程,结合器件构型设计,优化制备工艺和性能指标,发挥分子光子学材料在光学性能、溶液加工、柔性集成等方面展现出独特的优势,推动分子光子学在相关产业尤其是新型显示领域的应用。

一、科学目标

以有机分子特有的“单线态和三线态激子过程调控”为主线,聚焦新材料合成制备和高性能器件集成两大方向,解析微纳体系中激发态物理化学过程,指导新型分子光子学材料骨架结构及其微纳晶体的设计合成,拓展高性能有机微纳激光和有机电致发光在显示器件方面的应用。以此为基础,形成在国际上有重要影响的研究团队,提升我国在分子光子学前沿交叉方向上的整体水平。

二、研究内容

本项目围绕“分子光子学材料的结构-性能关系”开展以下研究:

(一)高性能光子学材料的分子设计与可控合成。

以调控分子能级与激发态过程为导向,设计合成兼具高载流子迁移率和高固态发光效率的分子光子学材料;通过调控分子间弱相互作用充分运用其组装性能,制备形貌、结构和性能可控的分子聚集体,为发展分子光子学奠定材料基础。

(二)有机微纳体系的激发态调控与过程研究。

准确理解分子光子学材料体系中激发态动力学、载流子扩散动力学和能级调控等理论,揭示其中载流子传输性能和光学特性之间的平衡和制约关系;通过光、电、磁和热等多种外场手段强化激发态下的激子传输与电子转移和能量传递过程,以及激子和光子的强相互作用与耦合过程。

(三)高性能有机微纳激光材料与器件。

在新型分子光子学材料中实现覆盖可见光谱的受激辐射,设计新的微纳结构单元作为光学谐振腔,得到激光波长和模式可调可控的有机微纳激光;开发微纳晶定向图案化制备新工艺,发展微纳激光阵列大面积集成方法,探索基于分子光子学材料的激光平板显示技术。

(四)有机分子电致发光与显示器件。

以分子光子学的激发态动力学为指导,设计制备高激子利用率和窄谱带发射的发光器件;构建全新的器件模型,探索激发态传输及电荷陷阱效应等基本物理过程和规律,完善和发展电致发光和分子器件的相关理论,展示分子光子学材料在显示原型器件上的应用。

“电解水制氢与绿色化工耦合的科学基础”重大项目指南

面向可再生能源高效利用和绿色化工的重大需求,针对电解水与绿色化工耦合所涉及的关键科学问题,研究电解水过程中活性物种的生成与调控、电解水与有机物氧化还原反应的耦合过程,探究多尺度流动与传递对电化学过程的影响机制,构建若干规模化电解水与有机物合成耦合反应体系,形成能源化学与绿色化工领域新的发展方向。

一、科学目标

通过高效电解水耦合加氢/氧化的催化过程,实现碳-氢键、碳-卤键、碳-碳键以及碳-氧键等的定向转化,揭示电/光电作用下电极界面氢氧等中间物种的生成机理及其与有机物反应途径,建立选择性合成高附加值产物的实验方法和理论体系,构建电解水耦合化工产品绿色合成系统;发展新型光电化学反应器,阐明多相反应过程中的流动、混合、传递对能量与物质转化的作用规律,实现新能源利用与绿色化工耦合的应用示范。

二、研究内容

(一)电解水耦合氧化与高效制氢。

针对规模制氢与大宗化学品生产的耦合,研究多相界面活性氧生成与转化机理,以电极组成和界面性质调控活性氧在阳极表面的浓度、活性和能量,匹配有机物在电极表面的传质吸附特征和氧化反应能级;发展新型结构化电极,实现有机相、水相和气相在电极表界面的均匀分布、高效传递与反应耦合;研究有机相对隔膜性能的影响,提高隔膜稳定性;研究阳极活性氧的快速转化对水分解制氢过程的促进作用,并在工程化研究装置上实现耦合氧化高效制氢。

(二)电解水耦合加氢与氧化。

针对阴极制氢与耦合加氢之间的转换,利用活性氢和活性氧分别对有机底物进行加氢和氧化,合成高端精细化学品,提高能量和物质的利用效率;研究阴极活性氢的生成及其析氢/加氢反应的竞争机制,提高目标产物选择性;根据阴极和阳极反应的反应机制和动力学特性,设计新型电极及反应器,优化操作条件、探索成对电合成反应体系中电解反应与产物分离的协同机制。

(三)光电协同分解水与氧化/加氢耦合。

研究光促电解水制活性氧/氢和有机物选择性氧化/加氢的新型绿色合成方法,探究光电极对光子的能量利用以及动力学,揭示光促电解水的本征活性和动力学过程对有机反应选择性调控的内在机制,进一步促进水分解和有机物氧化/还原的耦合。

(四)制氢耦合绿色化工的过程强化与系统集成。

研究多尺度流动、混合和传递特性对电化学反应的影响,获得从电极、单池到系统的反应与传递耦合规律;研究反应与分离耦合机制,揭示系统内单元结构与性能的影响,确定单元间的衔接原则,建立电化学耦合反应系统的放大模型与设计方法,实现1~2个耦合反应体系工程化示范。

“固体结构的化学调控与功能强化”重大项目指南

固体物质在信息、能源、国防、机械、电子、医学等领域具有广泛的应用。物质的性能不仅取决于化学组成、相态、晶体结构,还受限于局域结构、化学有序、电荷有序、磁有序等。针对关系国家重大需求的电输运材料、铁电/铁磁体、储能材料等,利用先进大科学装置,多层次揭示固体材料结构与功能间的关系,运用化学手段调控固体结构,实现性能显著提升或获得新功能。

一、科学目标

通过极端条件合成、化学压力(Chemical Pressure)、缺陷设计和复相匹配等手段,实现对固体结构的化学调控;充分利用现代表征技术和方法,解析固体的晶体结构、局域结构、电子结构和声子结构等;创制系列新型电输运、高性能铁电/铁磁、高效储能等新型固体功能材料。

二、研究内容

(一)极端条件下特殊功能固体材料的合成。

在高温、高压或超强外场下,合成常规条件下难以得到的特殊结构和功能的固体材料;发展基于次级结构、堆积模块等合成砌块的可控合成方法,在多元体系中筛选超导、快离子导体、高能量密度等特殊功能材料,揭示其反应历程。

(二)化学压力调控结构与强化功能。

利用相界面应变、异质化学元素引起的局域结构畸变、离子调控等化学压力方法,实现晶体结构及晶格应变的微观尺度调控,建立化学压力调控结构的精准化学合成方法,揭示固体中元素分布、化学有序、电荷有序、化学成键和晶格变化,阐明结构-相态-性能的关联。

(三)缺陷调控结构与新型电输运固体。

通过化学掺杂、拓扑反应和玻璃结晶等多种途径,系统研究固体材料中缺陷的可控引入及其对晶体结构、电子结构的影响;结合多种技术手段建立缺陷组成、浓度、分布等表征方法;研究缺陷对固体材料中电子和离子输运性质的影响;从化学成键、离子间相互作用阐述固态离子导体中缺陷稳定与离子迁移机制;基于缺陷在性能上的构效关系,设计合成新型电子/离子导体等材料。

(四)复合固体结构调控与电极材料功能强化。

发展复合固体结构精准化学调控的新方法,研究单组分及复合固体结构与电子态之间的协同效应,以及轨道耦合、电荷转移、局域结构等对复合结构的影响规律;多层面认识能源复合固体材料的构效关系,提出高效电极材料等复合固体的设计原则,合成具有协同功能增强效应的电极复合材料。

“基于纳米孔道电荷传输的单分子单细胞精准测量”

重大项目指南

细胞中分子间通过电荷传输及能量有序交换发生的各类反应都是在极小且拥挤的空域和极短的时域内进行的,并控制着单个生物分子功能的执行、反应的精准调节以及能量的高效传递和转化等。纳米孔道限域空间提供了最逼近实际生命体系中分子反应行为的场所,可实现在极短的时域内进行单个分子的动态测量。然而,电子、质子、离子及分子在纳米孔道限域界面内的传输,常常表现出与宏观界面上完全不同的限域增强特性。因此,在生命分析中利用纳米孔道的立体限域空间及瞬态电荷传输特性,可获得极高的时空分辨,实现单分子、单细胞等单个体的精准测量,为进一步探索基础生命化学领域新现象、新规律和新知识提供了新途径。

本重大项目拟聚焦于具有纳米级孔道结构这一最基本的限域电荷传输界面,探索传感界面结构、电荷传输、测量精准度之间的内在关系,提出原创的纳米孔道测量新原理,将生命分析测量从宏观界面推进到纳米限域界面,从分子整体行为测量推进到单个分子、单个细胞差异性研究,有望成为现有基础分析化学研究方法和理论进一步发展的突破口,催生和引领蛋白质单分子测序、生物化学反应动态测量以及高通量疾病早期筛查等方向的研究。

一、科学目标

项目围绕“具有纳米级孔道结构”的限域电荷传输界面,突破现有对生命体系微弱瞬态过程测量的瓶颈,建立原创的纳米孔道界面分析化学理论与方法,构建具有单分子灵敏度和亚纳米空间分辨能力的原位、无损纳米孔道电荷传输测量器件,在单分子、单细胞水平上揭示电子、质子、离子、分子等相互作用及其能量转化过程,以期在单分子、单细胞水平上探索基础生命化学。

二、研究内容

(一)纳米孔道测量界面的可控构建。

以生物蛋白质、无机材料、有机大分子等为基本构筑单元,探索多元纳米孔道化学结构特征与电荷载体间的相互作用,发展空间限域电荷场扰动方法及可控单分子界面修饰方法,增强纳米孔道测量界面内多个探针基团的协同测量效应,从而构建每一个基团都精确可控的纳米孔道测量界面。

(二)纳米孔道单个体测量的机制研究。

探索传感界面结构、电荷传输、测量精准度之间的内在关系,调控限域空间内电子、质子、离子、分子的传输过程,建立基于纳米孔道界面电荷传输测量的特异性信号增强放大新机制,实现高通量、定性及定量测量生物分子的结构变化、分子间相互作用变化及其引发的纳米孔道界面内电荷分布差异和瞬态能量变化等。

(三)纳米孔道单细胞单分子原位测量研究。

发展适用于单个活细胞内单个分子可控递送和原位分析的方法,建立纳米孔道单细胞成像测量的新方法和谱学研究的新策略,深度解析由单个分子引起的单细胞表型特征;发展纳米孔道单分子计数与光学实时检测新技术,实现生理浓度范围单分子光学检测,阐释生物分子相互作用的单分子反应机制和动力学,从而在单分子、单细胞水平实现疾病早期筛查。

(四)纳米孔道界面的高时空分辨测量方法及系统。

突破现有生命分析方法的时空测量极限,发展具有高时空、高能量分辨,实时原位、无损的电子、电荷、离子测量新方法、新器件及新系统,在纳米孔道限域测量界面上实现单个生物分子反应中间体、反应路径、反应选择性等的瞬态测量,为蛋白质单分子测序以及重要生物化学反应研究提供技术支撑。

“面向重要化工分离的金属-有机框架材料设计及过程

调控机制”重大项目指南

分离是化工生产的关键技术之一。以烷烃/烯烃分离(如乙烷/乙烯等)、同分异构体分离(如正构烃/异构烃等)、二氧化碳捕获为代表的工业分离过程,其规模均在千万吨级,关系经济社会发展及国家战略需求。传统热驱动分离过程能耗高,若以非热驱动的吸附或膜分离过程替代热驱动分离过程,可望大幅度降低能耗。金属-有机框架材料拥有庞大的组分/结构单元库,其可设计性为吸附与膜分离带来机遇。然而,金属-有机框架材料目前尚未实现分离工业应用,亟待在基础科学与工程技术方面取得突破。本指南以重要的化工分离过程为导向,拟围绕金属-有机框架材料设计、吸附材料/分离膜可控制备、过程调控机制等关键科学问题,实现高效、高选择性、高稳定性分离,推动分离科学与技术的理论创新与技术进步。

一、科学目标

以金属-有机框架材料设计制备与重要工业分离过程调控为核心,揭示吸附分离与膜分离机理,建立分离材料组成-结构-性能设计方法;提出吸附材料与分离膜晶粒/晶界调控策略,突破分离通量与选择性的博弈限制;开展放大制备与组件集成研究,为金属-有机框架材料吸附与膜分离的工业应用提供科学支撑。

二、研究内容

(一)金属-有机框架材料精准设计与制备。

基于计算化学、“网格化学”及构筑模块策略,开展材料分子基元组成、拓扑结构、微观孔结构设计;基于先进晶体工程手段,实现材料高通量制备与结构表征;基于探针分子吸附,揭示材料与被分离分子相互作用机制及动态响应规律,建立理论与实验相结合的晶体材料构筑方法,创制具有工业应用前景的吸附与膜分离材料。

(二)金属-有机框架吸附材料结构调控与分离应用。

基于分子构筑单元设计,实现材料孔道结构、表面基团定向调控;基于单组分静态吸附与多组分动态分离的系统评价体系,开展吸附材料分离性能和构效关系研究,获得吸附分离热力学、动力学规律,反馈指导材料精准设计与吸附性能调控,实现烷烃/烯烃分离等体系的工业性试验;完成吸附材料的规模化制备及吸附分离过程的设计,为突破其在吸附分离工业中的应用提供科学基础。

(三)金属-有机框架分离膜可控制备与分离应用。

基于微区反应设计与分子组装技术,实现分离膜孔结构、择优取向、堆砌单元、晶界结构的精准调控,创新膜的工程化制备方法;在工业性实验装置上开展操作条件(温度、压力等)可控的多组分膜渗透分离在线评价,深入揭示膜分离机制,突破分离通量与选择性的博弈限制,获得工程放大规律;完成分离膜放大制备与组件集成设计,实现二氧化碳捕获等工业应用示范。

“面向学科前沿交叉的金属卡宾化学”重大项目指南

金属卡宾结构独特,其反应具有高效、多样以及可控等特点,受到人们的极大关注,相关研究对于合成化学、化学生物学以及有机材料等领域产生重要影响。对于金属卡宾的结构及其性质的理解不仅是金属有机化学基础理论研究的核心内容,也是发展具有高效性和多样性的合成反应的关键。金属卡宾丰富的反应性也为其在前沿交叉领域的应用带来新的机遇和挑战。

一、科学目标

针对金属卡宾的特性以及目前该领域发展的现状,本项目以探讨新型金属卡宾的发现及产生、结构以及反应性为出发点,发展基于金属卡宾的新反应、新方法,拓展其在功能有机分子合成、高分子聚合、药物合成以及化学生物学等交叉领域中的应用。通过项目的实施,推动合成化学以及结构理论的发展,并通过金属卡宾化学与生命科学的衔接为生物大分子化学修饰,化学蛋白质组学以及新药研发等提供新工具和新技术。形成一支在国际上具有重要影响的研究队伍,进一步巩固我国在金属卡宾领域的国际影响力。

二、研究内容

(一)新型金属卡宾的合成及其结构、反应性研究。

围绕过渡金属催化的卡宾转移机理研究,设计、合成、表征一系列活泼的金属卡宾中间体,包括铁卡宾、钴卡宾、镍卡宾、铜卡宾、钌卡宾、锇卡宾、钯卡宾、金属烷基卡宾以及金属双卡宾等;进一步通过实验和理论计算等手段,获取金属卡宾的结构信息和提出新的反应模式。研究含氟卡宾与含氟金属卡宾的合成、结构表征及其在含氟有机分子合成中的应用。

(二)基于金属卡宾的碳-碳键以及碳-杂原子键构建。

发展基于金属卡宾的碳-碳键以及碳-杂原子键构建新方法,包括金属卡宾参与的碳-碳键选择性切断与重组、碳-氢键的官能化、金属卡宾的不对称催化反应等。研究金属卡宾反应在高分子聚合中的应用,包括卡宾经典反应以及卡宾偶联反应为基础的高分子聚合,过渡金属催化的卡宾聚合、卡宾-烯烃共聚等。研究金属卡宾反应在高分子后官能化中的应用。

(三)金属卡宾反应在新药研发以及化学生物学中的应用。

发挥金属卡宾反应类型多样性的特点,开发具有生物兼容性的高效金属卡宾反应,为生物大分子化学修饰提供具有化学特征的新工具和新技术,为新药研发提供基础性和前瞻性的科学技术储备。包括应用金属卡宾参与的多组分反应实现生物活性小分子的多样性合成、应用金属卡宾反应对药物及生物活性分子进行后期修饰以及开发针对动态修饰的新药物靶标和相应的干预小分子、基于金属卡宾开发新一代化学蛋白质组学工具探针等。

“锂同位素萃取分离的科学、技术与应用”重大项目指南

锂同位素是十分重要的能源材料和国防战略物资。在清洁新能源领域,锂同位素是新一代钍基熔盐裂变堆、可控热核聚变堆和压水反应堆中的核心原料及调节剂。随着我国先进核能的快速发展,寻找更安全、更高效、易于工业化放大生产的锂同位素分离方法迫在眉睫。本项目采用“基础研究—应用研究—产业化”贯通式研究模式,开展有机萃取法分离锂同位素的科学、技术与应用研究。通过有机化学、物理化学、分离工程、人工智能、自动化控制等多学科交叉融合,解决萃取分离过程中的萃取剂分离效率低、稳定性不足、合成制备难、萃取分离机制不明确、萃取串级工艺难等重要科学与技术难题。促进有机萃取法分离锂同位素的新方法在基础理论和工程化应用方面上升到新的高度,促使原始创新技术在满足国家重大需求的任务中发挥重要科技支撑作用。

一、科学目标

本项目围绕锂同位素萃取分离过程中的科学、技术与应用关键问题,从发展新型、高效的萃取剂和可实用化萃取工艺为核心,解决从基础研究到产业化应用过程中的关键科学和技术问题。阐明锂离子在不同介质间转移的能量变化与动力学规律;揭示有机萃取剂分子结构与同位素分离性能的重要构效关系;阐明萃取剂分子在长期酸、碱、氧气以及辐照等条件下的降解规律;设计并优化萃取剂分子结构,发展若干具有自主知识产权的高性能新型萃取剂材料,锂同位素分离系数α大于1.030,在连续萃取分离条件下能稳定运行8000小时;发展串级萃取分离锂同位素的化工工艺,实现连续多级锂同位素的萃取富集浓缩,建设锂同位素萃取分离的工业化示范线。

二、研究内容

(一)萃取剂分子结构设计、合成与性能评价。

通过分子模拟软件设计并优化新型萃取剂分子结构;发展萃取剂分子的多样性、高效性合成方法,批量制备专用萃取剂;利用氟原子和含氟基团的独特效应,开展有机萃取剂、协萃剂、稀释剂等分子的高选择性氟化方法研究,建立含氟萃取剂、协萃剂、稀释剂等组成的独特萃取体系;建立萃取剂分离锂同位素的综合性能评价方法,考察萃取剂的分离系数、分配系数、萃取负载量等指标;调节并优化萃取体系的组分配方,揭示其对锂同位素分离效率的影响规律(包括协萃剂、改质剂、溶剂、盐效应等影响因素);根据工业化应用的要求,结合萃取剂分子的多方面性能,综合评价并筛选得到综合性能优秀、适合于工业应用的萃取剂分子。

(二)萃取分离机制及萃取剂结构与性能关系研究。

研究液-液两相界面锂离子迁移动力学;阐明两种锂同位素之间极化率、迁移率和溶剂化作用的差别;锂离子在萃取介质中的迁移、扩散及溶剂化过程中的复杂结构和能量变化;锂离子在不同萃取介质间转移的动力学规律;采用计算机模拟两相锂离子传输过程中的动力学和热力学问题等。采用人工智能技术,研究萃取剂结构与溶解性、同位素分离系数、萃取能力、转相能力等之间的关系,并得出构效关系规律;利用人工智能技术,对萃取剂的结构与化学稳定性、辐照稳定性之间关系进行模拟,并得出构效关系规律。

(三)有机萃取法分离锂同位素的工业应用。

研究不同类型萃取剂在长期化工应用中的化学和辐照稳定性,阐述萃取剂分子的在酸、碱、氧化以及辐照等条件下的降解规律及降解产物;研究萃取法分离锂同位素的全流程串级萃取化工工艺;设计并优化同位素分离专用离心萃取机的机械结构及串级连接方式;研究串级萃取试验过程中的自动化控制技术、工艺稳定控制技术及产品的后处理纯化技术;在多级串级萃取试验装置系统上,进行锂同位素萃取分离的连续分离富集试验,连续稳定获得富集产品;建设锂同位素萃取分离的工业化示范线,开展工业应用示范的技术研究。

工程与材料科学部重大项目指南

2020年工程与材料科学部共发布8个重大项目指南,拟资助8个重大项目。项目(含课题)负责人和主要参与者,要规范撰写5篇代表目录清单,与发现与原文标注不一致,将不予受理。项目申请人申请的直接费用预算不得超过1800万元/项。

“金属基复合材料构型强韧化设计与宏量化制备科学”

重大项目指南

轻质高强、多功能的先进金属基复合材料可满足结构轻量化和结构-功能一体化设计需求,是空天、电子、交通及国防等高科技领域发展不可替代的关键基础材料。发展以结构为首要因素的构型化复合设计理念,是突破传统金属基复合材料强韧性失配瓶颈的有效途径。通过多相多尺度增强体与金属基体之间构型化复合设计与制备,改善强度、模量与塑韧性之间的倒置关系,大幅度提高金属基复合材料的加工和使役性能,为规模化制备大规格高性能金属基复合材料提供理论依据和可实用化途径,具有重要的意义。

一、科学目标

发展构型化复合新原理,解析复合制备、加工成型过程中多相跨尺度复合构型的构筑演化规律,通过试验和建模拟实揭示多相构型化复合材料体系的微观-细观-宏观跨尺度下的构效关系,明确复合构型与使役性能最优化调控机理,建立复合构型强韧化的跨尺度力学理论基础,推动金属基复合材料制备科学进步,实现大规格构件的性能靶向设计与宏量化制备。

二、研究内容

(一)多相多尺度金属基复合材料微区协调变形机理。

研究多相多尺度复合材料界面及微区结构性能定量表征方法,表征与分析多级复合界面及微区的超微纳力学行为,揭示复合界面、微区结构、性能及应变局域化的内在关联,解决多相多尺度复合材料界面匹配性设计的基础性问题;研究复合构型和界面与性能的内在关系,揭示多相多尺度构型化复合体系中组元间协调变形机理和强韧化机制,实现性能导向的复合材料智能化设计。

(二)多相多尺度金属基复合材料的跨尺度力学理论。

将包含复合效应的材料微结构特征与力学计算相耦合,建立跨尺度力学拟实模型,对复合构型的结构参量与复合响应规律进行跨尺度表征与分析,阐明微纳增强体之间的协同与耦合机制,揭示多相多尺度复合构型强韧化复合材料的作用机理,建立多相多尺度复合构型调控强韧化的跨尺度力学理论。

(三)多相多尺度金属基复合材料的构型设计与制备。

研究多相多尺度增强体与基体形成复合构型的技术途径,揭示制备过程中增强体与基体的形状、尺寸和界面等结构因素的限域作用规律,研究复合方法和变形加工对复合构型和复合界面的形成机制的影响规律,构筑多相多尺度复合材料强韧化设计与制备的共性基础理论,建立大规格复合材料高性能化、高可靠性和短流程、低成本的可控宏量化制备技术原型。

三、申请要求

申请书的附注说明选择“金属基复合材料构型强韧化设计与宏量化制备科学”,申请代码1选择E0105。

“材料结构和性能的高压调控原理与技术”重大项目指南

压强是独立于温度、成分的热力学参量,是调控材料结构、组织和性能的重要手段。压强可以显著减小原子间距,改变原子成键和堆积方式以及电子结构。通过高压调控,不仅可以驱使材料显微组织和晶体结构产生变化,还可以降低反应势垒,使常压下无法发生的化学反应得以实现,从而能够合成出常压下根本不存在的新材料,这类显微组织和高压相材料往往具有常压条件下无法获得的优异性能。因此,高压不仅是产生新材料、新物理现象和新化学反应的重要源泉,也是发现新调控原理和高性能材料的重要手段。

一、科学目标

研制出静水压大于400GPa的新一代纳米孪晶金刚石对顶砧并进行应用验证,在高压调控极性共价材料电子结构、相变顺序、显微组织和性能的科学原理和技术途径方面取得突破,发现高压下超导转变温度处在室温附近的新材料体系,制备出高强韧性的多晶陶瓷,发展出逼近甚至超越材料理论性能极限的原理和方法,形成具有自主知识产权的高压调控原理和实验技术,建设一支创新能力强、多学科交叉且具有国际竞争力的高压科学研究队伍。

二、研究内容

(一)超过400GPa金刚石对顶砧的研制与应用验证。

开展纳米孪晶金刚石对顶砧设计、制造、压强标定和验证性应用研究。优化激光和聚焦离子束加工工艺参数以及激光辅助热化学抛光工艺,建立一套超高硬度纳米孪晶金刚石对顶砧的高效精密成形方法,研制出静高压大于400GPa的新一代新型金刚石对顶砧压机,建立超高压的标定方法,通过测量典型稀土金属在超高压范围的新相图和状态方程加以验证。

(二)高压下富氢材料的结构与超导电性。

开展新型富氢材料晶体结构、电子结构和超导转变原位高压调控的理论与实验研究。预测不同高压条件下全部氢原子化的目标富氢材料体系、晶体结构、电子结构和超导温度,在高温高压实验条件下合成目标材料,研究高压下超导转变温度与材料成分、晶体结构和电子结构的关系,阐明氢对电声子耦合的贡献,建立高压下富氢材料中高密度氢原子化的原理和机制。

(三)结构陶瓷显微组织与性能的高压调控。

开展高温高压调控先进陶瓷材料纳米孪晶显微组织和力学性能研究。掌握不同晶体结构先进陶瓷材料形变孪晶形成的压力和温度条件,阐明陶瓷材料强度、断裂应变、硬度、断裂韧性等力学性能随显微组织结构的变化规律和微观机制,合成出具有纳米孪晶结构的高强韧性多晶陶瓷材料,建立陶瓷材料形成纳米孪晶显微组织的科学原理和调控技术。

(四)极性共价材料性能的尺寸效应。

开展极性共价材料外部尺寸效应和内外尺寸耦合效应研究。发展透射电镜下高精度原位力学加载及测试技术,研究材料弹性性质、强度和变形与样品尺寸关系的外部尺寸效应;利用高压技术在材料内部引入纳米孪晶基础上,研究外部尺寸与孪晶内在尺寸的耦合规律,阐明自由表面与孪晶界双重约束下微观变形机制的应力调控原理,发展达到甚至超越对应理想晶体理论强度和断裂应变的原理和方法。

三、申请要求

申请书的附注说明选择“材料结构和性能的高压调控原理与技术”,申请代码1选择E0203。

“结构功能一体化石墨烯纤维基础研究”重大项目指南

碳纤维是高端先进装备和空天飞行器的核心战略材料。未来高速飞机、高超音速飞行器和高分遥感卫星等重大装备的发展迫切需求结构功能一体化碳纤维材料,以同时满足其轻质高强高模结构承载和高导热高导电等极端服役条件的严苛要求。传统聚丙烯腈基碳纤维强度高功能性弱,沥青基碳纤维存在强度与功能提升的瓶颈。受制于“分子碳化融合”制备原理,传统碳纤维难以破解结构功能一体化的百年难题。石墨烯纤维是由单层氧化石墨烯液晶连续湿纺后经高温还原而成的新型碳纤维品种。大片石墨烯组装的新原理突破了传统碳纤维的晶畴尺寸限制,有望另辟蹊径,迈向单晶化晶须的理想结构模型,实现结构功能一体化目标。亟需开展系统深入的基础研究,快速推进结构功能一体化石墨烯纤维的发展,破解碳纤维结构功能一体化的重大科学技术难题,形成结构功能一体化石墨烯纤维的理论体系,建立我国自主智造的碳纤维新品种,支撑我国发展高速和高超音速民用和军用飞行器国家战略对高性能碳纤维的重大需求。

一、科学目标

建立石墨烯基元有序组装制备碳纤维的新路线,发展石墨烯纤维大单晶化与结构功能一体化的新原理,阐明二维大分子纳米基元连续成纤、缺陷控制、大单晶化、材料复合体系的结构功能高效协同等科学问题,建立结构功能一体化石墨烯纤维的可控制备方法学,突破石墨烯纤维结构功能一体化的综合性能,构建结构功能协同应用的石墨烯纤维材料体系,突破传统碳纤维结构与功能难以兼容的瓶颈,抢占结构功能一体化纤维材料的战略高地,创立我国自主智造的独有碳纤维新品种,从源头创新打破国外的封锁垄断,形成国际领先的高水平研究队伍,助推我国从纤维大国迈向纤维强国。

二、研究内容

(一)氧化石墨烯液晶纺丝及高温还原单晶化调控。

可控制备大尺寸低缺陷单层氧化石墨烯纺丝料,研究氧化石墨烯液晶纺丝的凝固组装原理,解析多级多尺度褶皱及缺陷结构的形成及控制机制,研究化学及高温还原方法,阐述石墨烯纤维多级缺陷演变的热力学与动力学规律,建立石墨烯纤维单晶化的动态和原位分析表征方法,确立石墨烯纤维的结构-性能关系,实现石墨烯纤维的高性能化和高功能化,系统建立结构功能一体化石墨烯纤维的连续可控制备方法学。

(二)石墨烯纤维多尺度结构解析及理论模型。

建立二维大分子单分子行为及凝聚态形成的统一理论,探明石墨烯纤维独特的片片成纤原理,厘清片层分子组装还原促进单晶化的机制,计算与实验相结合解析石墨烯纤维的多级多尺度结构,建立石墨烯纤维的结构模型和结构功能一体化的理论原理。

(三)石墨烯纤维的多功能耦合原理及编材方法。

发展石墨烯纤维的多功能设计方法,探明多功能耦合的原理与耦合控制方法,形成光、电、热、磁、力等功能耦合的多功能石墨烯纤维系列,建立多功能石墨烯纤维的编材智造方法。

(四)结构功能一体化石墨烯纤维复合材料系统。

研究石墨烯纤维的界面特性并发展界面调控设计方法,研究石墨烯纤维复合材料上浆剂与树脂的匹配设计,探索石墨烯纤维复合材料的结构功能一体化设计方法体系;建立石墨烯纤维碳碳复合材料的制备方法,探明复杂电磁、极高极低温等条件下材料综合性能的控制要素。

三、申请要求

申请书的附注说明选择“结构功能一体化石墨烯纤维基础研究”,申请代码1选择E03。

“航空关键金属构件热加工多物理场演变及扰动的智能调控基础”重大项目指南

航空装备是具有典型代表性的高端制造领域,也是一个国家高端制造业水平和能力的象征。随着大飞机等各种装备向大型轻量化、高可靠长寿命、低成本方向发展,对构件的铸造、锻造、增材制造等加工成形技术提出了新的要求和挑战。

针对我国在航空金属构件制造领域基础理论研究、关键技术与产品质量存在的问题,应用人工智能和大数据等前沿技术,改变传统试错法研究模式,加强从合金设计、制造工艺到工程应用全链条的基础理论研究,有望发展可促进我国航空关键金属构件热加工水平快速提升的新原理新方法。

一、科学目标

以航空关键金属构件为典型对象,以变革铸造、锻造和3D打印等热加工成形传统的“试错法”研发模式,发展基于集成计算材料工程(ICME)、大数据分析、人工智能等前沿技术和方法的高效研发模式,解决多物理场耦合作用、成分-组织-性能内禀关系与建模、边界条件和工艺参数扰动模型、热加工工艺过程智能控制理论和方法等关键科学问题,建立高性能金属构件热加工成形全过程综合优化、冶金质量全过程精确调控的基础理论与方法,构建热加工智能虚拟制造系统,为实现构件的高质量制造提供基础理论与关键技术支持,推动和引领金属材料领域智能热加工制造的基础理论研究和关键技术的发展。

二、研究内容

以航空金属构件的铸造、锻造和增材制造三种典型的热加工制造为研究对象,重点研究基于大数据和人工智能的金属构件热加工过程综合优化与冶金质量精确调控等基础理论和共性关键技术。

(一)航空关键金属构件精确铸造过程与质量智能控制基础理论。

基于多层次跨尺度全过程集成计算、过程模型和数据驱动的工艺-组织-性能内禀关系模型,高性能合金铸造成形数据库构建,基于材料逆向设计与工艺优化、多目标综合优化、智能预测-自主决策控制的金属构件智能虚拟铸造基础理论与方法,基于大数据与人工智能的金属构件精确铸造与冶金质量精确控制的基本原理、关键技术及在典型构件成形中的应用。

(二)高性能航空构件锻造成形过程智能控制基础理论。

热力耦合/异步能场作用与金属流动、微观组织的形成演变规律,锻造加工工艺参数、组织结构演化和使役性能之间的交互作用,高性能合金锻造成形数据库构建,基于过程模型与工艺知识库的逆向设计规则与锻造工艺优化、过程智能控制模型,基于大数据分析与人工智能的金属构件锻造过程精确控形控性一体化的基本原理、关键技术及在典型构件成形中的应用。

(三)高性能航空构件智能增材制造基础科学问题。

复杂多元合金高能束微小熔池熔体热质传输及超常冶金行为、极端温度梯度与冷却速率非平衡凝固行为,高温叶片、梯度性能合金构件增材制造过程中组织/缺陷和残余应力的形成机制与演化规律与数字化精确控制方法,典型合金增材制造数据库构建、基于大数据与人工智能的全流程工艺优化、基于虚拟制造的成分-组织-工艺一体化控制方法及在典型构件成形中的应用。

三、申请要求

申请书的附注说明选择“航空关键金属构件热加工多物理场演变及扰动的智能调控基础”,申请代码1选择E0414。

“高性能热塑性复合材料大型构件制造基础”

重大项目指南

减轻结构重量、提高结构效率是航空航天、交通运输、能源等领域高端装备性能跃升的根本。碳纤维增强高性能热塑性树脂基复合材料(以下简称热塑性复合材料),不仅具有传统复合材料轻质、高强、可整体制造的特点,更具有高韧性、可回收再造等突出优势,其应用可显著提升高端装备性能并可实现绿色制造,对维护国家安全和提高制造业竞争力具有重要意义。但由于热塑性复合材料制造时赋形温度高且范围窄、熔融粘度大、纤维与树脂界面易开裂等特性,导致大型构件制造存在以下问题:一是赋形时纤维形态精准控制困难;二是固化时形性协同调控困难;三是加工装配时机械和热损伤抑制困难。因此,有必要开展高性能热塑性复合材料大型构件制造基础研究,解决限制其高质量制造的瓶颈难题。

一、科学目标

以实现热塑性复合材料大型构件高质量制造为总体目标,阐明纤维、树脂形态与构件性能的映射关系,探索材料特性演变及其对缺陷形成的影响规律,揭示力热耦合作用下材料去除原理和损伤产生机制,提出高质高效赋形、形性协同调控固化、精密高效加工及高质量连接装配等制造新原理新方法,为热塑性复合材料大型构件的制造与应用提供理论基础。

二、研究内容

(一)热塑性复合材料大型构件高质高效赋形原理。

研究热塑性复合材料预浸料粘合性能与赋形工艺参数的关系,阐明赋形缺陷形成机制,提出纤维形态主动控制的赋形新原理,研究赋形最优路径规划方法,创新赋形工艺技术与装置。

(二)固化过程形性调控原理与缺陷抑制方法。

探索热塑性复合材料固化新原理,研究固化过程中材料物化特性和构件状态在线监测方法,揭示大尺寸构件固化缺陷的形成机制,提出固化状态调控策略和缺陷抑制方法,发展大型构件形性协同固化新技术。

(三)热塑性复合材料切削加工机理。

研究热塑性复合材料切削力、热产生与作用机制,揭示加工中材料的去除行为和损伤产生机理,提出加工损伤抑制原理,创新高质高效加工工具及工艺方法,形成热塑性复合材料构件的高质高效加工新原理与新技术。

(四)构件表面小余量去除机理及大尺寸构件高质量装配方法。

研究热塑性复合材料小余量磨拋去除工艺机理,阐明表面去除力热耦合行为及其对表面质量的影响规律,提出构件非均匀小余量去除精度预测与力位精准调控方法,研究测量-自适应加工-连接一体化的高质量装配工艺方法。

三、申请要求

申请书的附注说明选择“高性能热塑性复合材料大型构件制造基础”,申请代码选择E0508或者E0509

“多能源互补的分布式能源系统基础研究”

重大项目指南

传统能源利用模式存在高能耗、高污染和高碳排放等一系列问题,而可再生能源固有的分散性和波动性则导致能源利用的低能效和难于远距离消纳。多能源互补的分布式能源系统,通过多种能源互补进行冷、热、电能的就地转化消纳,具有节能、环保等优势和实现能源高效梯级利用的巨大潜力,是未来能源系统的重要发展方向。将发展多能源互补的能势耦合及其综合梯级利用新途径,提出化石能源与可再生能源源头互补和过程匹配的新思路,解决热能与化学能等不同品位能量的协同转化与高效存储、高比例可再生能源非稳态输入和多种负荷输出源荷匹配等关键科学问题,形成多能源互补分布式能源系统集成控制的基础理论。

一、科学目标

突破传统能源利用模式导致的能量品位损失、污染物和碳排放,以及可再生能源能量密度低、波动性造成的低能效和难于消纳等关键瓶颈,构建多能源互补的分布式能源系统,提出能势耦合与多能互补新理论,化学过程与热力循环协同转化新机制,以及适应波动性能源输入与多种能量负荷需求的主动蓄能调控新方法,降低化石能源转化利用的不可逆损失,实现近零排放和高比例可再生能源的提质增效;发展分布式能源系统集成新原理和新方法,助推能源技术革命,并引领热力学和能源利用的未来发展。

二、研究内容

(一)多能互补的能质能势表征与提质增效机理。

针对多能互补的分布式能源系统中的能势耦合与能的高效综合梯级利用的关键问题,研究化石燃料与可再生能源的能势表征,探索可再生能源与燃料化学能源头互补方法,揭示燃料化学能释放过程不可逆损失规律与可再生能源的提质增效机制。研究多能源的能量有序释放与动力循环耦合,揭示互补过程燃料化学能与热能高效梯级利用机制,发展多能源互补的能势耦合理论与源头节能方法,为多能源互补的分布式能源系统提供理论和方法基础。

(二)多能互补的协同转化与能势耦合机制。

针对化石能源与可再生能源的源头互补和过程匹配关键问题,探究燃料化学能与太阳能协同转化的能势演变规律,揭示燃料化学能“源头节能”与太阳能“提质增效”的协同机制,提出太阳能与天然气协同转化新途径;揭示燃气轮机-燃料电池混合动力系统能势匹配机理,发展多元化燃料混合动力过程的能量梯级利用方法,获得强变负荷条件下的混合动力系统热质时空分布规律及自适应控制方法。

(三)多能互补的能量提质与存储。

针对分布式能源系统内多品位化学能和热能相互转化、存储和能量品位提升的关键问题,发展多能互补分布式系统中低品位能源的高效提质方法,揭示分布式系统能源存储利用过程中热能品位提升的理化机制;研制高循环稳定性、低成本的新型热化学储热材料,探索非均匀能流条件下热化学储热材料反应性能优化策略,发展拓扑优化的高效储能装置设计方法,为多能互补分布式系统的能量提质与存储提供基础指导理论和方法支撑。

(四)多能互补分布式能源系统的主动调控。

针对高比例可再生能源非稳态输入和多种负荷输出源荷匹配的关键问题,开展太阳能、风能的全工况能质互补特性与匹配规律研究;揭示冷、热、电等用能负荷的周期性和随机性动态波动特性;研究多能互补分布式系统能量传递、存储和转化过程对用能负荷波动的响应特性;揭示源、储、荷耦合特性规律,发展多能互补分布式系统全工况运行调控策略;形成分布式能源系统多能互补、源储荷匹配的主动调控新方法。

三、申请注意事项

申请书的附注说明选择“多能源互补的分布式能源系统基础”,申请代码1选择E0601。

“超大城市深层地下空间韧性基础理论”重大项目指南

开发利用深层地下空间、建立多功能一体的立体城市支撑系统,是提高城市空间容量、改善城市环境、增强城市韧性的重要途径,是超大城市未来发展的必然趋势。当前各国地下空间的开发主要集中于浅层,深层开发的理论与经验十分匮乏。浅层单体地下工程结构的设计及建造理论无法满足深层地下空间韧性开发的需求。深层地下空间是地下工程群-岩土体的复杂动态耦合系统,其开发利用面临着地质环境演变机制不明、施工变形及稳定控制难度大、全生命周期服役安全要求高、工程系统灾变耦联机制复杂等科学技术挑战,亟需开展深层地下空间与地质环境互馈机制、深层施工水-土-结构耦合机理、深层地下结构全生命周期性能劣化及恢复规律、深层地下空间灾变耦联机制等基础科学问题研究,建立深层地下工程系统的韧性设计理论体系。

一、科学目标

针对深层地下空间工程系统具有隐蔽、不可逆、动态变化,以及地下空间灾害破坏范围广、影响大等特点,探明深层地下空间开发地质环境效应和施工灾变机理,提出安全控制理论和方法,建立多种致灾因子作用下地下结构性能劣化及恢复模型,为全生命周期韧性设计提供理论基础;构建地下工程群耦联韧性模型,形成深层地下空间韧性评估理论及提升方法,为深层地下空间韧性开发提供科学支撑。

二、研究内容

(一)深层地下空间地质环境效应评估。

建立应力场、渗流场、温度场等多场耦合作用模型,探明深层地下空间建设的扰动、遮帘和热岛效应,揭示深层地下空间地质环境多场互馈机制,建立深层地下空间地质环境效应评估理论和模型。

(二)深层地下空间施工灾变机理与安全控制。

研究深层地下施工力学行为,建立水-土-结构时空耦合模型,分析深层土强卸载成拱机理及演化规律、高水压渗透破坏机制、邻近结构变形机理,提出施工安全控制理论及技术。

(三)深层地下结构全生命周期韧性设计理论基础。

研究深层地下结构全生命周期材料劣化特性和结构性能演化机制,揭示地质环境变化、施工扰动、地震灾害等多种致灾因子作用下结构性能劣化规律,建立相应的灾后快速恢复模型,为深层地下结构全生命周期韧性设计提供理论基础。

(四)深层地下空间韧性评估与韧性提升。

研究多种致灾因子作用下深层岩土体-工程系统耦联灾变机制,建立深层地下工程系统鲁棒性、冗余性、适应性及可恢复性的分析方法及地下工程群耦联韧性模型,提出深层地下空间韧性评估和提升理论体系。

三、申请要求

申请书的附注说明选择“超大城市深层地下空间韧性基础理论研究”,申请代码1选择E0808

“极地环境载荷及其与海洋结构物的耦合特性”

重大项目指南

北极蕴藏丰富的油气资源、具有巨大的航运潜力、占据十分重要的地理位置,是我国的战略新疆域。国务院公布的《中国的北极政策》白皮书,指出我国是北极事务的重要利益攸关方,发起了共建“丝绸之路经济带”重要合作倡议,并与各方共建“冰上丝绸之路”。海洋结构物从开敞水域进入极地水域面临严峻挑战,结构的主要载荷从波浪变为海冰,设计技术与运营保障发生根本变化。由于对极地冰环境的认识不充分,北极战略的重大需求和已掌握的科学理论间存在着巨大的差距,照搬国外的设计规范,难以保障海洋结构物的安全。这些难题成为制约我国极地海洋结构物研发设计和安全运行保障的瓶颈。

一、科学目标

海冰载荷具有极大的破坏性,常造成极地海洋结构物遭受冰损、冰困、冰激振动等重大事故。因此,破解海冰力学行为的机理与演变规律、海冰的运动模式、海冰与结构耦合机制等科学问题,开展极地环境载荷及其与海洋结构物的耦合特性的基础研究,必要而迫切。科学目标是:在海冰力学行为的跨尺度理论、冰场与波流的耦合机理、冰载荷与结构物的互馈机制等方面取得重大进展和关键突破,形成极地环境载荷及其与海洋结构物的耦合特性分析理论,为极地海洋结构物的研发设计及安全运行保障提供理论支撑。

二、研究内容

(一)海冰力学行为的跨尺度演变规律。

主要研究海冰力学行为的多尺度效应、跨尺度演变规律与控制机理、多尺度力学理论和跨尺度本构关系。

(二)极区波流与海冰相互作用分析理论。

主要研究冰水间的多界面动态耦合机理、波流在多种类型海冰中传播的能量衰减理论、波流造成海冰破碎/漂移堆积的形成机制。

(三)冰-水-结构物耦合下的冰载荷特性研究。

主要研究冰和结构的碰撞及破坏过程演化规律、冰和结构的能量转换传递机理与模型、冰-水-结构耦合下的冰载荷预报理论与方法。

(四)重型破冰船破冰能力预报方法。

主要研究重型破冰船破冰过程与碎冰运动、不同破冰模式下的破冰船运动性能和结构冰激响应、破冰能力预报方法及船型优化。

(五)水下垂直破冰能力预报方法。

主要研究水下航行体准静态向上和高速向上的垂直破冰能力和结构冰激响应、研究水下航行体载荷预报方法及防撞结构形式。

三、申请要求

申请书的附注说明选择“极地环境载荷及其与海洋结构物的耦合特性”,申请代码1选择E11。

来源:国家自然基金委

声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!

投稿模板:

单篇报道:上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!

系统报道:加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦

历史进展:经典回顾| 聚集诱导发光的开山之作:一篇《CC》,开启中国人引领世界新领域!

 

微信
微信
电话 QQ
返回顶部