最顶级的绝热保温材料,气凝胶!

气凝胶材料是一种纳米多孔网络结构的轻质固体材料,具有孔隙率高、比表面积大、密度超低、热导系数低等特质,总结起来就是超轻、超强、超级绝热,故其用途非常广泛,在催化、保温隔热等领域被称为神奇材料。

尤其是在绝热保温领域,室温导热系数可低至0.013w/(m·k),堪称是最顶级的绝热材料,用一句“yyds”评价毫不为过(yyds,当下很火的网络用语,永远的神拼音简称,意为非常厉害,气凝胶作为当下乃至将来最顶级的绝热材料当仁不让)。大到航天材料,宇航服消防隔热服;小到保温杯、汽车隔音隔热、港口漏油吸油污,非常宽泛的使用领域让气凝胶在绝热材料市场受到业界高度关注。

气凝胶的绝热特性

1992年,美国学者HUNTAJ提出了超级绝热材料的概念,是在预定的使用条件下,其导热系数低于“无对流空气”导热系数的一种绝热材料。它具有以下特征:

  1. 几乎所有孔隙特征尺寸在100nm以下,80%以上气孔尺寸在50nm以下;
  2. 极低的体积密度;
  3. 在预定使用条件下具有比“无对流空气”更低的导热系数;
  4. 具有较好的耐高温性能。

气凝胶性质及特点
最顶级的绝热保温材料,气凝胶!-1

几种常见保温材料的导热系数
几种常见保温材料的导热系数

 

根据以上特征,气凝胶是一种很好的超级绝热材料。

气凝胶隔热材料隔热机理

气凝胶复合材料的传热量计算公式为:

最顶级的绝热保温材料,气凝胶!-3

  • 式中:
    Qg——气体分子导热量,J;
    Qc——气体对流换热量,J;
    Qs——固体骨架导热量,J;
    Qr——气体辐射换热量,J。

对应的热导率:

最顶级的绝热保温材料,气凝胶!-4

式中:

  • kg——气体分子热导率;
  • kc——气体对流热导率;
  • ks——固相热导率;
  • kr——气体辐射热导率。
  1. 根据分子运动及碰撞理论,气体热量传递主要通过高温侧的高速度分子与低温侧的低速度分子碰撞。气凝胶复合材料中的气体流动属于过渡区或者自由分子区,会严重限制分子的自由移动,使气体分子与孔壁发生弹性碰撞,其kg趋近于0。
  2. 气体对流是孔隙内流体的宏观运动,引起各部分之间产生相对位移,导致冷热流体掺混,发生热量传递。气凝胶的纳米级孔隙尺寸会使空气分子被限制在其自由行程内,气流依附在气孔壁上,无法形成有效对流,其kc趋近于0,基本上可以忽略内部孔隙的对流。
  3. 固相导热是固体分子在平衡位置的晶格振动的结果。一方面,气凝胶复合材料极低的密度使得ks也较低;另一方面,其内部复杂三维连通的网络纳米孔结构,延长了热量经由固体传输的传热路径,使其内部会有“无穷长路径效应”也进一步减弱了固体骨架之间的热传导。
  4. 气体热辐射不需要介质,它通过产生电磁波来传递能量,而外部辐射热,穿过多孔材料时,会被多孔材料固体骨架吸收、反射或者折射。从气凝胶材料的电镜扫描图中可以看到它会有纳米气孔,这些数量趋于无穷多的气孔壁构成了很多反射界面,它们就是一个个遮热板,使得在常温下kr也很低。

气凝胶材料

目前高温隔热气凝胶的主要材料为氧化物气凝胶炭气凝胶碳化物气凝胶3种。

氧化物气凝胶

氧化物气凝胶是开始研究最早的一种气凝胶且种类繁多,有氧化钨、三氧化二铁、氧化锡、氧化锆、氧化钇等气凝胶,都具有高孔隙率、低热导率等特点。目前研究最多的是二氧化硅气凝胶和氧化铝气凝胶。不仅仅在高温隔热领域,氧化物气凝胶在催化剂及载体、气体过滤、吸附材料等方面都有广泛应用。

1、SiO2气凝胶

二氧化硅气凝胶是高温隔热气凝胶中开始研究最早,研究也相对更成熟的一种气凝胶。该气凝胶的合成方法主要是首先使用溶胶-凝胶法在溶胶中形成网状纳米骨架形成凝胶后,通过超临界干燥法去除骨架之间的溶剂并且完整保留骨架结构。

2、Al2O3气凝胶

氧化铝气凝胶的制备方法与SiO2气凝胶类似,前驱体一般采用醇盐或无机盐。氧化铝的熔点高达2000℃。相比二氧化硅气凝胶,氧化铝气凝胶由于拥有特殊的微观结构,在保持材料耐高温性能的同时提高了材料的隔热性能。但Al2O3气凝胶在1000℃以上使用时同样容易发生烧结(晶型转变)导致材料的隔热性能降低(体积缩减可达50%以上)。通过引入不同元素从而形成多元氧化物气凝胶可以改善Al2O3气凝胶的耐高温性能。

炭气凝胶

氧化物气凝胶在1000℃以上易因晶型转变和烧结而发生塌缩从而影响材料的隔热性能,而炭气凝胶在惰性及真空氛围下耐温可达2000℃以上,且其中的碳纳米颗粒本身就有较好的辐射吸收能力,相当于良好的遮光剂。制备方法是将有机气凝胶干燥和碳化,从而得到炭气凝胶,但缺点是在空气中350℃便会发生氧化。通过在炭气凝胶表面覆涂抗氧化层是一种防止材料氧化的方法,这一研究方向给炭气凝胶带来较好的应用前景。

碳化物气凝胶

碳化物具有耐高温、耐磨、耐腐蚀、熔点高、硬度高、导电性良好等特点,且机械性能稳定。虽然碳化物本身具有较高的热导率,但将其制成具有极高孔隙率的气凝胶材料之后,可大幅提高隔热能力,作为一种优良的耐高温隔热材料使用。目前碳化物气凝胶的主流研究方向为SiC气凝胶,该气凝胶的合成方法是将二氧化硅气凝胶和碳源混合后进行碳热还原反应从而得到SiC气凝胶。

纯的碳化硅气凝胶虽抗氧化性能优于炭气凝胶,但在高温条件下仍然会发生氧化,且强度较低。将其与其他材料复合或将其表面氧化形成一层致密的氧化膜可以解决这两大问题。

相关新闻

微信